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Abstract —This paper deals with an exact approach to the dynamic stability of orthotropic shear-
deformable viscoelastic flat plates subjected to mn-plance uni/biaxial edge load systems. [n deriving
the associated governing equations a Boltzmann hereditary law is used and in addition transverse
shear deformation, transverse normal stress and rotatory inertia effects are incorporated. The
integro-difTerential equations governing the stability of simply-supported flat plates are solved in
the Laplace transform (LT) space in order to determine the eritical in-planc edge loads yiclding the
asymptotic instability of flat plates. The stability analysis allows one to obtain the nature of the loss
of stability. i.c. cither by divergence or by utter. Numerical applications are presented and pertinent
conclusions are formulated.

INTRODUCTION

Tremendous interest in the analysis of fiber-reinforced composite plate (and shell) like
structures has been manifested in the last few years in the field literature. This interest is
due to the advent and increased use of high modulus, high strength, low weight composite
materials in the various ficlds of modern technology. Among the multitude of applications
they include, e.g. the high-speed aircraft and acrospace structures, rocket engines, turbine
blades, ete. Due to the high temperature gradients experienced by these structures, their
constituent materials exhibit a time-dependent behavior which could be modelled by a
lincitr (or nonlincar) constitutive law. Inaddition, due to their weak rigidity in the transverse
shear direction, the theory of flat (or curved) panels composed of composite materials,
requires the incorporation of transverse shear deformation effects. In spite of its evident
importance, the rescarch in this field appears to be somewhat scarce. In their monograph,
Malmeister ef al. (1980) peformed a stability analysis for the transversely isotropic visco-
clastic pancls undergoing cylindrical bending. However, in their approach, the viscoelastic
properties are considered in the transverse shear direction only. Since the extensional moduli
in the direction perpendicular to the fibers also exhibit a time-dependent behavior (due to
the presence of the matrix) this constitutes an arguable restriction imposed on the material
behavior. Wilson and Vinson (1984) analyzed the stability of rectangular, viscoelastic
orthotropic plates subject to biaxial compression. In their analysis the equations governing
the stability are obtained by using a quasi-clastic approximation which overlooks the
hereditary material behavior. Sims (1972) performed a similar quasi-elastic analysis of the
problem, thereby implying an instantancous time-dependent behavior as opposed to the
hereditary one.

In this study lincar viscoclasticity theory is used to analyze the dynamic stability of
composite, viscoclastic flat plates subjected to in-plane, uni/biaxial edge loads. To this end
an exact dynamic approach has been used. In deriving the associated governing equations,
a three-dimensional linearly viscoelastic, hereditary constitutive law is assumed. In addition,
having in view that composite-type structures exhibit weak rigidities in transverse shear,
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the associated governing equations account for the transverse shear deformations. as well
as for the transverse normal stress effect. which has hitherto been neglected. The integro-
differential equations governing the stability are derived using the elastic—viscoelastic cor-
respondence principle applied to the equations derived within the elastic range in Librescu
and Reddy (1986). The governing equations are solved for simplv-supported boundary
conditions by using the Laplace transform technique. thus yielding the characteristic equa-
tion of the system.

In order to predict the effective time-dependent properties of the orthotropic plate. an
elastic behavior is assumed for the fiber, whereas the matrix 1s considered as lincarly
viscoelastic. In this connection, towards the goal of evaluating the nine independent prop-
erties of the orthotropic viscoelastic material in terms of its isotropic constituents. the
micromechanical relations developed in Aboudi (1987) are considered in conjunction with
the correspondence principle of linear viscoelasticity.

The stability behavior analyzed here concerns the determination of the critical in-plane
normal edge loads yielding the asymptotic instability of the plate. The problem is studied
as an eigenvalue problem.

The general dynamic instability solutions are compared with their quasi-static counter-
parts. Comparisons of the various solutions obtained in the framework of the third-order
transverse shear deformation theory (TSDT) are made with its first-order counterpart
(FSDT). Several spectal cases are considered and pertinent numerical results are compared
with the very few available in the ficld literature. Comparisons between the TSDT, FSDT
and the classical Kirchhoft theory of plates are also presented.

PRELIMINARIES

The case of a flat plate of uniform thickness / is considered. By S, we denote the
upper and lower bounding plancs of the plate (defined by x; = +4/2) symmetrically located
with respect to its mid-plane @ (defined by x; = 0), while by Q we denote the edge boundury
surfuce.

The points of the three-dimensional space of the plate will be referred to a rectungular
Cartesian system ol coordinates x,, where v, (x = 1.2) denote the in-plane coordinates, x,
being the coordinate normal to the planc v, = 0. Throughout the analysis, unless otherwise
stated, the Einsteintan summation convention is employed where Greek indices range trom
I to 2, while Latin indices range from | to 3.

BASIC EQUATIONS

Struin-displacement equations

For a third-order bending theory (TSDT) of plates which retains the assumption
of inextensibility of the transverse normal clements, the following representation of the
displacement ficld across the thickness of the plate was postulated (Librescu and Reddy,
1986) :

ihy (R3]
Vo= V() '
(L)

V=1, 0

V= Vlv,.x0) while ¥, = F[x,.1].
At this stage we note that the above representation of 1, allows one to fulfill the static
boundary conditions on the external bounding planes S. implying the absence of tangential
external loads. The linear strain tensor is written as
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e e xsd =V +V,). ()

Upon substituting egns (1) into eqn (2). we obtain

(83 th ()i [R)]

Zexﬁ = x}( ’/;[5+ L;{x) + (.\’3)}( [/1ﬁ+ ,/241)
1k ‘(}) {u]
2‘-'13 = ;; +3(-‘.3)- l;+ V.‘.x
€ =0 (3)

where e,4. ¢, and e,, denote the in-plane. transverse shear and transverse normal strain
components, respectively. By virtue of the assumption implying the absence of distributed

.
external moments p,. i.c.

+h 2 M

[o3x3] 8= p, =0 )

it may be shown (see for more details Librescu and Reddy (1986)) that the following
relationship holds:

1) 4 o n

= Vet . ()

Equation (5) in conjunction with eqns (1) reveals that the bending theory of plates may be
n )

reduced to the determination of only three displacement components (i.e. ¥, and V).

Constitutive equations
As a result of the principle of superposition of the linear viscoelasticity theory we may
obtain Boltzmann’s hereditary constitutive law (see, e.g. Pipkin (1972) and Christensen
(1982)). For a three-dimensional linearly viscoclastic anisotropic material this may be
written as (Malmeister ¢t af., 1980)
!

UII[I] = € [’]Eumn [O] +J Ez/mu[t]emn[’ - T] df (6)

0

where E,,,,.[f] are the relaxation moduli; ¢ and t denote the current and delayed time
variables, respectively. In eqn (6) the first term corresponds to the elastic material behavior.
The Laplace transform (LT) of eqn (6) yiclds

6‘1/ = -‘.Eljmn‘:mn (7)
where the overbars denote the LT with s as the LT variable, while the overdots denote time
derivatives. Considering the elastic part of constitutive law (6), we may express it in the

following convenient form (Librescu, 1975)

Tayp = Lypn€on + 00 Eop3363,
6.3 =2E, 1 3¢i t3]

where g, and g,,, denote in-plane and transverse shear-stress components, while

Ez/i]} EJ Jwun

E:[{um = Loygon —

3333

o~ E 3
Epy =20 9
s E]J}J ( )
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denote the reduced clastic modult. 0, being a tracer identitving the presence of o, (which
takes the value 0 or I, according to whether this influence 1s 1gnored or included).

Equutions of motion
The equations of motion for a three-dimensional linear continuum are as follows :

O’x;./+pH1 = V‘“’x (l()nl)
CT:,«_;."F”:::‘?‘PH:=pl“'~‘ (H)b)

where p denotes the mass density of the medium. and H, the body forces per unit mass.

In order to formulate the refined bending theory of plates in terms of the basic
(R3] {m

unkanowns F, and 1, we need three macroscopic equations of motion. These are obtained
by considering the moment of order one of the tirst two equations of motion, eqn (10a).
and the zeroth-order moment of the third equation of motion. egn (10b). In the absence of
body forces. these two-dimensional equations of motion read

(BB} m (R3]

L LT Lx‘ = ‘s('fx

(n ) {1y

Lo+ pa—opphlty =0 (h

where

it

h Tl A
Lol d = ’ a.uxy dyy )
W s |

I ’ R
1,,.[.\',..\':,/|(; . G dx‘> (2
h2

v

detine the moment resultants and the transverse shear resultant, respectively, while

Oy

N AN =N A TR (13)

detine the distributed external transverse loads (per unit area), while p denotes the mass
density of the medium. In egns (1) 8, and d¢ are two tracers identitying the effect of the
transverse inertia and rotary inertia term

(1 AN .
,/lx = J Iy } ',.\'\ d.\,’v‘
[N

/

respectively. Towards the goal of representing the governing equations in terms of the basic
oh n

variables 1o and B egns (11) are to be used in conjunction with eqns (12). (8). (3). (5) and

(10a) (which is integrated across the segment [0, x4) in order to determine a4,). This yields

the following governing equations of elastic orthotropic tlat plates (TSDT) :

I Y -V
Eons Vv — e Vo 2404 . Eoub o+ V)
- 1331
. Ez/x'\\ i 40 40 o . 60
— 20,0y o /’I Wik P Euab, + A Lo b, +0¢ A fi= 0
. (o (] m R u'n’
ihE,,,},_ x| V,,‘., + 1 /m) + s _")I)Vh‘ =0 (14)

In these cquations
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(o p/,‘ )

: = 60 (# =1 (15)

while F;,; denotes the elastic transverse shear compliance when 4 = o, and £;,,; = 0 for
4 # w. Also the tracer J identifies the dynamic effect of a;;.

Within the first-order transverse shear deformation theory (FSDT) the following rep-
resentation of the displacement field is postulated :

thy
Folv,. v t] = x4,

n

V;[.\',,,.Xx.f] =} (16)

Neglecting the influence of g5, in the constitutive law (i.e. 9, = 0 in eqns (8)). and using
the procedure outlined for the TSDT we obtain the following equation governing the
bending of transverse shear deformable orthotropic flat plates (FSDT) (Librescu, 1975):

o th m 4]
12 TN S /1[,,, wil(Vi+ Vi) —oem by =0
h {n 10)
K- IIL/HA\“,/;'F"t,/:)+l’\‘(>n'”u =0 (17)
. D oh'
where K- is the transverse shear correction tactor, my = ph and  m, = 2

THE EQUATIONS GOVERNING THE STABILITY OF VISCOELASTIC ORTHOTROPIC FLAT
PLATES

In the absence of distributed external moments (implying (;I)', = (), the stability equation

of an orthotropic clastic plate may be obtained formally by replacing in the governing
@ o o w0
equitions, p‘ by pr+ Ly Vi + L Vs +2L,, V5 (see, e.g. Volmir (1967) and Ambart-
i ({11} )

sumian (1970)), where Ly, Ly, and Ly, play the role of in-plane edge loads. A full deduction
of stability equations was carried out in Chandiramani (1987). Furthermore, the viscoelastic
counterparts of clastic stability equations can be obtained by taking the LT of the latter
ones and then repluacing therein the moduli and compliances by their Carson transforms
(CT). Employment of the above procedure in eqns (14) yields, in the Laplace transform
space, the equations governing the stability of viscoelustic, orthotropic, flat plates. They are

= O in EI’,m )] Q)
L e Vi o "‘4Lz/w- TR LN el Eovii(Vip+ Vain)
<3113
[“ " ( 0 i ) £ (n
—D()\()HI:* [)(\ ,/”!—SV‘,,[()]—L‘[;[O])"" 114\’
LR B K

40 _, © 60
+‘/I*3‘ExxuVu+/1 ¢/ =0 (18a)

M o [TV

1/15.,,1A1(l’,,,,+ Friw) + P\+-f L,Viy,

o m m o (o )

+ L Va4 2L, V.u:} "‘sl)l)/l(-TZ Vi—shh[0] - 15[0]) =0 (18b)
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(T_b ht ‘(T»' h i W ’((h. i0) )
fi=p 1—5[5' V.—sh[0]- ¥ [0]] - 66[5' Vie—s1,[0] - V;_,[O]]) (19)

In eqns (18) and (19) the overbar affecting a quantity denotes its LT while an overbar
followed by a star, i.e. (**) denotes its CT. Inverting eqns (18) and (19) into the time
domain. we obtain

o, ) [1is
J Boponlt = €] Vroyrgle] dt + Engon (0] Vrel1]
i)

~

th ih

- 4J El[lmr:[[ =]k, plt) dr— 45,/1.”’:[0] Voenlt]
0

Ui} 1

+4d, j Ez/m; [1-1’][ L,),,mﬁ[r] + V.\.mu[f]] dr
0

(R} 0y

+ 4(5«\ Exum [0][ VA‘.m/f[’] + ly}‘-""’/*[[”
tih (i

t
— 5()-,\(5”) JA E,,” ‘[! - 1’] V‘./,[r] dr - 5()-,\(5;5111;,1;\\[0] V\_;x[’]
0

oy (0}

40 .
+ J Eouale =1Vt + Wule]] dr

h?
40 mo o 60 .
+ 0 E s OV el + VaLle]] + W O¢c fit] =0 (20)

)) o)

! () [t , th {
ﬁhf Elt =)Vt + Visa [t do+3hE, 0 [010 Vi [t + Vi ()]
[H

(0 ()] n) (W (0} (8] tih

+ Pal)+ Lo (Vs [+ L[ Vs aale) 4 2L [0V el = Suph Wale) = 0. (21)

In egns (20) and (21) the following notations have been introduced :

- 1/ . E‘ E*
E =¥ 177 E“ _ __X_[_i—llw J}(UE)}
zﬂum[{] {S ( 2 Elﬁ

ERRE)

- | — % b‘*

£ - 2 2433
* 3flri = —‘{ : Y ~ .
W [ ] 5 Wi E’;\}g

) 1 E
5 = p -1 _xﬂ'}"} . N
E-,/n.%[l] =4 {5 Et!”} -

Equations (20) and (21) represent the system of equations (in LT space) governing the
stability of viscoelastic, orthotropic, plates in the framework of the TSDT. By dropping, in
the above equations. the terms involving the time derivatives of the material properties, we
obtain the elastic counterparts of these equations.

A similar procedure applied to eqns (17) yields the LT of the equations governing the
stability of plates within FSDT. These arc



The theory of orthotropic viscoelastic shear deformable composite flat panels 471

B ew D m o h

EExﬂm) R K hEﬁ343(V+ VJA) 6Cm|(s ‘/ﬁ_s;/ﬁ[O] l/ﬂ[O]) = 0 (23)

and

(I) (0) M Ly} () [{4)] 0

KhEﬂ;,_;(P 5+ VJ.«[J)"‘PJ‘*'Y Llll/.}ll+L“V}”

) (0 (0) ) )

+2Li, Vi 42} —domy(s7 ¥y —s¥3[0] - VA [0]) = 0. (24)

Inversion of eqns (23) and (24) into the time domain yields
W s (mn h? (M
E ) Ex[iup [’ t] pu e [t] dl' + - l-) Exﬂup [O] Lu o1 [[]

—K:/lj Eﬂux[’_r]“ [-;]-}-(;)h[t]] dr
— K¥E s lOII + Pl —dcm, B[ =0 (25)

and

! (n [} wm
K*h J L,,\”[I-t][VAI,[T]-f- Vi aultll dr+ A" IIF,,M[O][K,,[I] + Vil

wm m () w (" ) (b

+[,|[’]+L||[,] V\ “[,]+llvw[I]V‘1w[’]+71‘]w[,] V‘ l»[l]-—-()ulnu V|[[] = 0 (2())

Equations (20) and (21) and their FSDT counterparts (i.c. eqns (25) and (26)) represent a
system of linear integro-differential equations which could be used either in a dynamic
response or dynamic stability analysis of the system subjected to time-dependent, bi-axial,
in-plane edge loads.

It is also worthwhile to note at this point that for a stability analysis the transverse

load (;)’][I], as well as the terms associated with the initial conditions for the displicement
field which appear in the governing cquations should be dropped (Porter, 1968).

Boundury conditions

Equations (20) and (21) as well as eqns (25) and (26) represent sixth-order governing
equation systems the solutions of which must be determined in conjunction with the
prescribed boundary conditions (which are three at each edge). For a simply-supported
plate (hinged-free in the normal direction), we have the following boundary conditions:

[E))] om (48]

V3= V3=L“=0 at .\'|=O,L|

(8)] [C]] )
Vi=Vy=1L.=0 at x,=0,L,. 27

SOLUTION OF THE STABILITY PROBLEM

As was mentioned before, the stability of viscoelastic composite plates subject to in-
plane edge loads could be analyzed starting with eqns (20) and (21) or their FSDT counter-
parts (i.e. eqns (25) and (26)). However, henccforth we will consider the case of constant,
in-plane, biaxial edge loads, i.e.
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-

th [ {ih [ i

Ly[t]= L. L. [t]=Lsy and L. t] =0

For such a case it 15 more appropriate to sobve the stability problem in the Laplace
transformed domain. Therefore. we scek the conditions on the edge loads that yield the
instability of the system (represented n the present case by the plate).

Stability analvsis using the third-order transcerse shear deformation theory (TSDT)
As was noted previously the solution of the equation governing the stability of the
plate requires the fulfillment of boundary conditions (27). To this end. the following

thi th

representation of the displacement field F[x,,.¢] and I [v,.¢] satisfving boundary con-
ditions (27) is postulated

By= 3 Y iy cos [A,0] sin [A,00] £

m=1 =1

[RR] ‘ ’ .

=Y Y B, sin [4,x)] cos [4,x.] £
m=1 n=1

D) ! ’ X

Vo= Y Y C,,osin [0 ] sin [4,x] £, (28)
I T

where 4, =mail, 4, =nn Land A, B, C,, are constants representing the amplitudes
of the displacement quantitics. Now the LT of eqns (20) and (21) are eqns (18) and (19),
respectively. Thus, introducing the LT of egns (28) into eqn { 18a) corresponding to the free
index x = | yiclds the following cquation:

S Y (Vs L Lolsh cos [A,0,] sin [£,x,] =0 (29a)
m Lo |
where
fmn["'] = - mu(l‘ 1 |/m +[ 1 "/m/u +~ DRTRY . ,.) +4 1um([ 11 [/m + L 121 "‘u)
‘*‘48,,,,.([‘ RV IV f TRV E W € [ 1 nfm) B, (40, [ 1222 mAn)
Cm,.('lt)‘f\ El 11t ;-,:. +40‘,¢\ [?1 1:1}-",/:-”:) -C,., (5‘5.-\‘51xl’ /3‘[ 133 ':-m )-\':
30 -, , 4() = L .
+ A, W EG G+, 5 [ Ay (43¢ /’)‘ ,,,,.(()('/)/-,,.)3" (29b)
1"
and

- SN =k R . . . . . .
Imn [.V] = { Cmn( - 5().'\()“[)[51 133 ‘)( “/“m) + "'um("‘)( /’) : {“l,/mn [()] + ,/nm [OJ } . (2()('.)

The equation corresponding to the free index 2 = 2 can be obtained from eqns (29) by
replacing the index | with 2, 4, with 4, and .1, with B,, (and vice versa). Examining eqns
(29) (and their counterparts for the index 2 = 2), we may infer that due to the orthogonality
of the sinc and cosine functions, we have the tollowing result:

Vo8] fon[s] + Lnls] = 0. (30)

As was noted earlier, the stability of a lincar dynamical system (of the type represented by
eqn (30)) does not depend on the initial conditions (i.c. I..[s]) but is simply determined by
the nature of its impulse response, ie. ¥ "{(F,.[sD '), Thus we may write the stability
equation as follows:
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Y...[s] = 0 (and its counterpart for the index x = 2). 31

Now introducing eqns (28) into eqn (18a) for the case of uniform biaxial compression (i.e.
(0} h )

Lll = gllh~ L:: = Q::h. L‘: = 0) we obtain

Y Zl: (W (5] Frn[5] + T a[5]) sin [Anx|] sin [£,x:] =0 32)

m=1n=1
where
'E’mn[s] = Amn(ghgrl i 3;-»1) + an( .%,IE:Z‘:};'H) + Cmn( ihET‘ ! \;'rfv + %hg:.‘Z‘;*n:)
+ Cmnh[gl l;"FEl + Q::j";:] + Cmn((s[)p/l)s:
and
jmn [S] = Cmn((sl)ph) (“‘j:ﬂﬂ [0] +j;"" [O])

A stmilar reasoning as above yiclds

W51 = 0. (33)
Equations (31) (and their counterparts for the index 2 = 2) together with eqn (33) are the
three equations governing the stability behavior. This set of three equations represents a
homogencous system of equations in terms of the unknown amplitudes A,,,. B,y Con

(playing the role of an cigenvector). The use of eqns (31) and (33) in conjunction with egns
(29) and (32). allows onc to write this system of homogencous cquations in the form:

Zl | Zl 2 "‘ 13 A i
le Z.‘l 7‘23 B,,,,, =0 (34)
Z-” Z‘l :,\1 Cmn

where

[ = S = Co=x o, 40 . S
Zy = ((4E|111'3-,7,+4El:|2"~5—40,\£11||"-,7.+ FETJIJ)+(4‘)CP)S-]

[(4571 22;‘111}-11 +4E‘TZ 1 l;'m;'n —4(Sz\£",l'l Zl’zm’{n)]

N
il

- =k .3 =* P 75* a2 . A* -3
ll} = -EIIll/'m—bllz'.!/'m/'n -~£l312"'m/“n _40/\bllll/'m

L Xk PR 40. X v ¢ Xk N - N )
=405 E 1 22hmh + i AmE vy | = (3O 0up L\ (113hm +Ocpin)s”

- =" P =% .« . < =¥ FR.
Z:l = [(4EI121/'"1/'n+4£lZl:/'m/'n_4()f\EZZ!l/'m/'n)]

= B} = . .z .1 40 = - -
Ly = [(4[1 :::215+4ET:11/-; =407 Es2a0dy + i E:;:;)'F(“()CP)S']

-t e ;:* - > -
(224mPn = 2E 13124, — 405 E 22004,
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Z; = [GhET51540)]
Z:=[( ghE—;)ZJ;-n)]
Zyy = [GREY 3d5 + 3hE S 47 +hlg AL+ goa ki) + (Opph)s®).

From eqn (34) it is seen that for non-trivial solutions of A,,,. B,,. C... the following
determinantal equation is to be fulfilled

det [Z,] = 0. (35)
Equation (35) yields a characteristic equation of the form

Pl _ o)
Qonls] )

where P,..[s] and Q..[s] are polynomials in 5. Thus. the zeros of eqn (36) are determined
from

p,ls}=0. (37)

Equation (37) is the characteristic equation of the system (represented by the plate subjected
to uniform biaxial compression). The zeros of this equation, i.c. the roots s, of P, [s]. are
the cigenvalues of the system which in general are complex quantitics. They decide the
nature of £,.,[¢] and hence the stability of the system. When Re {s,] > 0. £,..[¢] becomes
unbounded with time and due to the nature of s, the following cases of instability may arisc.
(i) Im [s,] = 0:in this case f,,,[¢] grows exponentially with time, and we have instability by
divergence. (i) Im [s] # 0:in this case /£, [¢] has an oscillatory growth with time. This leads
to instability by flutter.

Thercetore, the stability problem is reduced to the examination of the nature of the
zeros of the charactenistic equation, eqn (37). The coctlicients of the characteristic poly-
nomial, P,,.[s]. in eqn (37) can be varied by suitably varying the in-plane edge loads g,,
and g, in order to yield the instability boundaries of the system.

Stability unalysis using u first-order transverse shear deformation theory (FSDT)
An analogous procedure to that developed for the TSDT applied to eqns (25) and

(26), yields the characteristic equation of the system in exactly the same form as given by
eqn (37), but with different coefficients. For this case the coeflicients are

_ =% W =% h o, _x " -

Z, = E, l-,"‘-,:: + £ 0 A |FET K ) +570cm,
/l‘ .. % /1} ..

122 l‘-’ Aton +EIZI2 I-,/‘m/-u

=
1l
—
ty
- %
”
-
—_—
P
o
=
X
N
=

V4
=+ (AT =e (H - . 1
Zyn=|Lnn 'l’.;"m' +E0:2 i-)/~r;v + £ (K +570em,

Zyy = [E325(K7h2,))]

Zyi =2y

Zy =2

Zyy = [T (KPhi2) + ENv (KA + h(g 1 25+ 32020 + (Bpmy)s]. (38)
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2 FIBERS

X3
Fig. 1. Arrangement of libers in matrix.

By parallcling the procedure presented previously for the TSDT we may obtain within
FSDT the stability boundaries for viscoelastic orthotropic plates subjected to uniform in-
plane edge loads.

MATERIAL PROPERTY DETERMINATION

The constitutive law of a three-dimensional anisotropic viscoclastic body (see eqn (6))
will be fully determined by expressing explicitly the relaxation moduli as functions of time.
This task will be accomplished by using a micromechanical model. Such a model, developed
in Aboudi (1984, 1986, 1987) will allow onc to predict the overall behavtor (i.c. effective
propertics £,,,,,) of the unidirectional fiber-reinforced composite, in terms of the properties
of its constituents (i.c. fiber and matrix).

This model assumes that continuous fibers extend in the x -direction and are arranged
in a doubly periodic array in the xy- and x;-directions (Fig. 1). The cross-section of the
rectangular fibers is i l,, while /,, [, represent their spacing in the matrix. Due to this
periodic arrangement, we nced to analyze only a representative element as shown in Fig.
2. This representative cell contains four sub-cells identified by B, y = 1,2. Four local
coordinate systems defined by x,, /", %', and having their origins at the center of each
sub-cell, are displayed in Fig. 2. The following first-order displacement expansion in each
sub-cell is considered :

X2
1 - Ly -
-(1) =(1)
Xz ) X2 (2
Y- L-, Bl L 3
=1 rea __
-2} 1 _(;)-——-'
X!L 1 X2
-t Sy
n X
g2 % (=2 s
7= lr=2
X,

X3

Fig. 2. Representative volume element for a fiber-matrix composite.
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V:lf‘;) - W':/f:'b_{,_.ft{f)d,:d:-l+f(‘:»)wfﬂ"‘ (39)

where B7"" are the displacement components of the center of each sub-cell with ¢,
¥\"" characterizing the linear dependence of the displacements on the local coordinates
£, %", Here the repeated Greek indices (in parentheses) do not imply summation.

By using the relations of continuity of displacements and of tractions at the interfaces
between sub-cells (see Aboudi (1986) for details), we can obtain a system of linear equations
in terms of the microvariables ¢*", ¥!*"'. Solving for the microvariables we can obtain the
explicit constitutive law relating average stresses to average strains (Aboudi, 1986). The
detailed expressions for the resulting constitutive law of the elastic continuum can be found
in Aboudi (1987). Their employment along with the elastic-viscoelastic correspondence
principle yields the relevant micromechanical equations pertaining to a viscoelastic fiber-
retnforced composite (Chandiramani. 1987). These equations relate the Carson transformed
effective moduli of the composite (i.e. £X,.). to the Carson transformed etfective moduli
of the constituents (i.e. the fiber and matrix). The model developed in Aboudi (1987)
considers the constituents as being transversely isotropic. Furthermore, both the fiber and
the matrix may be modelled by a lincarly viscoelastic constitutive law. However, for the
purpose of the present work. the fiber was modelled as a linearly elastic tsotropic material,
while the matrix as a linearly viscoelastic isotropic one.

The properties of the isotropic, elastic, boron tibers considered in Aboudi and Weits-
man (1974) are as follows:

G o= 25% 10" psi
I\‘ll)

332 % 10" psi

where G, K represent the shear and bulk moduli, respectively. Using the above proper-
tics, we obtain

A0 = K 2G = 16,53 < 10" psi
G 3AT +2G")
” Ij_m+(;<”
" _ (KD —5G")y
o= ZW(I\F”%—{G“))

£V = = 6.426 x 107 psi

= ().1990. (40)

Using the propertics for the isotropic viscoeluastic epoxy matrix considered by
Mohlenpah ¢f al. (1969) and Schapery (1972) we can represent them as a three-parameter
solid in the following manner:

E™[] =08x 10°+0.18x [0° ¢ "*'"31 " for 0.< 1< 2000 h

™[] = 0.372=0.007 ¢ “ 30N for < 1 < 2000 h (41)

where the time ¢ is in min.

Now in order to obtain the time-dependent relaxation moduli, £,,,,.,.[¢]. tor the visco-
clastic orthotropic composite plate. we must invert the corresponding Laplace transformed
moduli given by (s) ' E},..[s].

A rigorous treatment of the problem of LT inversion is given by Bellman and Kalaba
(1966) and this method, which was chosen for this problem. has been effectively used in
Swanson (1980) for dynamic viscoelastic problems. Within this method. referred to as
Bellman's technique. the definition of the LT is used to invert the LT by means of a Gaussian
quadrature using orthogonal polynomials. Duc to their cxcellent convergence properties,
Legendre polynomials were mainly used in Bellman and Kalaba (1966).
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Fig. 3. Material property for the orthotropic plate: E;y.y = E444,.

It was observed that for the order of the polynomial ¥ = 10, the convergence has been
attained to provide accurate results. For ¥ = 15, the results were almost the same as for
N = 10.

The results obtained for E,,,..[¢] vs time {¢] are shown in Figs 3-7 for the case of
equally-spaced square fibers (in which case we obtain six independent material constants
for an orthotropic body instead of nine (Aboudi, 1987)). When these plots arc fitted by an
cxponential series corresponding to a three-parameter solid, we obtain the following results

Eyo= 02903 x 10° 40.2500 x 106 ¢ (0373010 B
Eyryy = Evyyy = 03212 10° 4 0.6769 x 10° ¢ ~(0-39%0 =10
Eiy: = Eiyy = 01294 x 10°40.2633 x 10> ¢ (0778810 D
Eyyyy = 0.1304 % 10° +0.2609 x 10 ¢ ~(0 364710
Eivr = Eyyyy = 0.6921 x 10°+0.1548 x 10° ¢ =0 438610

Esyyy = 0.5321 x 10°+0.1194 x [0° g (0430sx10 A, (42)
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Fig. 4. Material property for the orthotropic plate: E 13 = £/ 111
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Fig. 5. Material property for the orthotropic plate: £,.,..
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Fig. 6. Materiaf property for the orthotropic plate: £, = £,,, ..
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Fig. 7. Material property for the orthotropic plate: £,4;,.

NUMERICAL RESULTS AND CONCLUSIONS

Numerical results

The stability boundary was obtained by solving the characteristic polynomials associ-
ated with TSDT (eqn (37)). and its FSDT counterpart. This was done by using the
IMSL subroutine ZPOLR. The numerical applications were considered for an orthotropic,
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Fig. 12, Comparison of stability bounditries for the orthotropic clastic plate:; L,/h = 24, uniaxial
compression.

viscoelastic plate. By invoking the initial value theorem for the Laplace transformed material
properties appearing in eqns (22) the numerical applications could incorporate also their
elastic counterparts.

All cases above were considered so as to obtain an “exact” dynamic solution, i.e. for
dr = 0y = O¢ = Jy, = | where Jy, d¢. Jp, are tracers identifying the dynamic effect in a4,
rotary inertia and transverse inertia, respectively, while d, is a tracer identifying the overall
(i.e. static and dynamic) effect of ;. It was observed that the inclusion or exclusion of the
inertia terms does not affect the results.

The results associated with the classical Kirchhotl plate theory may be obtained as a
special case of the FSDT by considering K* — a which is equivalent to considering infinite
transverse shear rigiditics. The results obtained in this study are not universal since a non-
dimensional analysis was not possible due to the inherent complexity of the problem.

The stability boundaries are shown in Figs 8--12 for the following cases:

(1) wviscoelastic, flat plate;
(i1) elastic, flat plate.

Cases (i) and (ii) are considered for thick (L,// = 4.8) as well as thin plates (L,/it = 24).
In addition, the following sub-cascs were considered. (a) Biuxial compression for which
case, the aspect ratio (A.R. = L,/L,) of the plate was taken as unity. The values of the in-
plane normal edge loads g, vs ¢,; are plotted to obtain the stability boundaries. (b) Uniaxial
compression : within this case, the aspect ratio, A.R., was varied and the corresponding value
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of g,, was plotted in order to obtain the stability boundaries. For all plots shown, M and
NV denote the mode numbers in the x;- and x.-directions. respectively. It was observed that
for biaxial compression. the stability boundaries corresponding to M = | were the lowest
ones. whereas for uniaxial compression. those corresponding to N = | were the lowest
ones. Therefore, in each of these two sub-cases, only the lowest stability boundaries were
displayed. For all the cases. unless otherwise indicated, instability occurs by divergence
only. Flutter boundaries are indicated on the figures. For the uniaxial compression case,
flutter instability occurs to the right of the arrow appearing in the figures.

Conclusions

In this paper, a stability analysis of orthotropic. viscoelastic rectangular plates has
been accomplished. The equations governing the stability were derived by using the cor-
respondence principle technique. The material properties were obtained by considering the
micromechanical model developed in Aboudi (1987). In the modeling of the problem, the
Boltzmann hereditary constitutive law for a three-dimensional viscoelastic medium has
been used. The stability problem was analyzed in the Laplace transformed space in order
to determine the asymptotic stability behavior.

The special cases considered in the numerical applications allow one to conclude the
following.

(1) The stability boundary determined for a viscocelastic plate is lower (i.e. more critical)
than its clastic counterpart.

(2) Figures 8 and 9 reveal that o,y may influence the viscoclastic stability boundary in
a strong and bencticial way. However, as may be concluded from Figs 10 and [, for thin
pancls the influence of 4, on the instability boundaries becomes insignificant.

(3) Figures 8 and 9 as well as Figs 10 and 11 reveal that transverse shear deformation
effects are more pronounced in viscoclastic plates than in their elastic counterparts.
However, this feature is much more accentuated in the case of thick pancels (Figs 8 and 9)
than in the case of thin ones (Figs 10 12).

(4) The analysis performed here allows one to obtain the nature of loss of stability, i.e.
cither by divergence or by flutter. It was revealed in Figs 8 and 10 that for an orthotropic
viscoclastic plate, the instability may result both by divergence and by flutter.

(5) [t is observed that for lurge aspect ratios (L,/L,) the stability boundaries come
closer to their counterparts determined within the classical KirchholY theory of plates.
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